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After failing in my attempts to locate online a derivation of the convolution of a general rectangular
pulse with itself, and not having available a textbook on communications or signal processing theory, I
decided to write up my attempt at computing it. I expect, however, that it is the first example one would
find in any textbook that discusses convolution.

Recall the general definition of the convolution f * g of two real-valued functions:

(f *g)(t / fu t—u)du:/_Zfa—u)g(u)du. 1)

We apply this to the problem where f and g are both given by

0, t<a,
fit) =g(t) = A, a<t<b, (2)
0, t > b,

where [a, b] is a time interval on the real line, with @ < b. In signal processing this represents a rectangular
pulse of amplitude A and width or duration T" = b — a. The convolution of this function with itself is the
time-dependent function

/ F(u) £(t — u)du (3)

How is f(t — u) related to f(u)? Define g(u) = f(u + t), which for ¢ > 0 represents a horizontal
translation of f(u) to the left by ¢t. Then h(u) = g(—u) = f(—u+1t) = f(t —u) is a reflection of g(u)
across the vertical axis u = 0. Thus, as a function of u, f(t — w) is a replica of f(w) which, for ¢ > 0, is
translated to the left a distance t, then reflected across the vertical axis u = 0. Thus, f(t —u) is a function
whose values depend on both u and t. The convolution is calculated for each value of ¢ on the real line by
integrating over the real line (with respect to u) the product of the two functions f(u) and f(t —u) at that
value of ¢. For the rectangular function defined by (2), graphs of the functions f(u), f(u+1t), and f(t —u)
for t > 0 are illustrated below:

f(u) f(t-u)

Referring to the Figure, observe that as the distance ¢ from a increases, the translated and reflected pulse
f(t —u) moves to the right toward +o0o. On the other hand, as the distance ¢ to the left of a decreases,



the translated pulse f(u+t) moves toward the right, and the translated and reflected pulse f(¢t —u) moves
toward the left.

Focusing first on the left edge u =t —b of f(t—u) (represented in the next two Figures by the rectangle
with ”dashed line” sides), we see that for u = ¢t — b > b, the original pulse has value f(u) = 0, so the
convolution will be zero for ¢ > 2b, corresponding to u > b.

Whena <t—b<b,ora+b<t<2b both f(u)=Aand f(t—u) =A. But f(t—u)=0foru<t—b,
so the integrand is nonzero only for t — b < u < b, as shown in this Figure:

The two pulses coincide exactly when ¢t — b = a, and t — a = b. that is, when t = a + b.

For t > a + b, we focus on the right edge u =t — a of f(t — u) as it moves thru f(u) to the left. For
a<t—a<b, or2a<t<a+b, both f(u) and f(t — u) have amplitude A, but f(t —u) =0 for u >t — a,
hence the integrand is nonzero only for a < u <t — a. The situation is illustrated in this Figure:
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Finally, for u =t —a < a, or t < 2a, the original pulse f(u) = 0, so the convolution is again zero for
u < a.

These results are summarized in the following calculations of the convolution for any value of ¢, listed
in the opposite order of the above discussion:

(fxf)t) =0, for t < 2a,

t—a
(f*f)(t):/ A-Adu = A?(t — 2a), for  2a<t<a+b,

b
(f*f)(t):/ A-Adu = A% (20 — t), for a+b<t<2b,
t—b

(f=)t) =0, for t > 2b.

The graph of this piecewise-defined function is an isosceles triangle of height A% (b — a) at the vertex point
((a+b),A%(b—a) ), and base of width 2(b — a) with vertices at the points (2a,0) and (2b,0) on the t—axis.
These details are illustrated in the next Figure.
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