Convolution of a Rectangular "Pulse" With Itself

Mike Wilkes

10/3/2013

After failing in my attempts to locate online a derivation of the convolution of a general rectangular pulse with itself, and not having available a textbook on communications or signal processing theory, I decided to write up my attempt at computing it. I expect, however, that it is the first example one would find in any textbook that discusses convolution.

Recall the general definition of the convolution $f * g$ of two real-valued functions:

$$
\begin{equation*}
(f * g)(t)=\int_{-\infty}^{\infty} f(u) g(t-u) d u=\int_{-\infty}^{\infty} f(t-u) g(u) d u \tag{1}
\end{equation*}
$$

We apply this to the problem where f and g are both given by

$$
f(t)=g(t)= \begin{cases}0, & t<a \tag{2}\\ A, & a \leq t \leq b \\ 0, & t>b,\end{cases}
$$

where $[a, b]$ is a time interval on the real line, with $a<b$. In signal processing this represents a rectangular pulse of amplitude A and width or duration $T=b-a$. The convolution of this function with itself is the time-dependent function

$$
\begin{equation*}
(f * f)(t)=\int_{-\infty}^{\infty} f(u) f(t-u) d u \tag{3}
\end{equation*}
$$

How is $f(t-u)$ related to $f(u)$? Define $g(u)=f(u+t)$, which for $t>0$ represents a horizontal translation of $f(u)$ to the left by t. Then $h(u)=g(-u)=f(-u+t)=f(t-u)$ is a reflection of $g(u)$ across the vertical axis $u=0$. Thus, as a function of $u, f(t-u)$ is a replica of $f(u)$ which, for $t>0$, is translated to the left a distance t, then reflected across the vertical axis $u=0$. Thus, $f(t-u)$ is a function whose values depend on both u and t. The convolution is calculated for each value of t on the real line by integrating over the real line (with respect to u) the product of the two functions $f(u)$ and $f(t-u)$ at that value of t. For the rectangular function defined by (2), graphs of the functions $f(u), f(u+t)$, and $f(t-u)$ for $t>0$ are illustrated below:

Referring to the Figure, observe that as the distance t from a increases, the translated and reflected pulse $f(t-u)$ moves to the right toward $+\infty$. On the other hand, as the distance t to the left of a decreases,
the translated pulse $f(u+t)$ moves toward the right, and the translated and reflected pulse $f(t-u)$ moves toward the left.

Focusing first on the left edge $u=t-b$ of $f(t-u)$ (represented in the next two Figures by the rectangle with "dashed line" sides), we see that for $u=t-b>b$, the original pulse has value $f(u)=0$, so the convolution will be zero for $t>2 b$, corresponding to $u>b$.

When $a<t-b \leq b$, or $a+b<t \leq 2 b$, both $f(u)=A$ and $f(t-u)=A$. But $f(t-u)=0$ for $u \leq t-b$, so the integrand is nonzero only for $t-b \leq u \leq b$, as shown in this Figure:

The two pulses coincide exactly when $t-b=a$, and $t-a=b$. that is, when $t=a+b$.
For $t>a+b$, we focus on the right edge $u=t-a$ of $f(t-u)$ as it moves thru $f(u)$ to the left. For $a \leq t-a<b$, or $2 a \leq t<a+b$, both $f(u)$ and $f(t-u)$ have amplitude A, but $f(t-u)=0$ for $u>t-a$, hence the integrand is nonzero only for $a \leq u \leq t-a$. The situation is illustrated in this Figure:

Finally, for $u=t-a<a$, or $t<2 a$, the original pulse $f(u)=0$, so the convolution is again zero for $u<a$.

These results are summarized in the following calculations of the convolution for any value of t, listed in the opposite order of the above discussion:

$$
\left\{\begin{array}{l}
(f * f)(t)=0, \quad \text { for } \quad t<2 a, \tag{4}\\
(f * f)(t)=\int_{a}^{t-a} A \cdot A d u=A^{2}(t-2 a), \\
(f * f)(t)=\int_{t-b}^{b} A \cdot A d u=A^{2}(2 b-t), \quad \text { for } \quad 2 a \leq t \leq a+b, \\
(f * f)(t)=0, \quad \text { for } \quad t>2 b,
\end{array}\right.
$$

The graph of this piecewise-defined function is an isosceles triangle of height $A^{2}(b-a)$ at the vertex point $\left((a+b), A^{2}(b-a)\right)$, and base of width $2(b-a)$ with vertices at the points $(2 a, 0)$ and $(2 b, 0)$ on the t-axis. These details are illustrated in the next Figure.

