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After failing in my attempts to locate online a derivation of the convolution of a general rectangular
pulse with itself, and not having available a textbook on communications or signal processing theory, I
decided to write up my attempt at computing it. I expect, however, that it is the first example one would
find in any textbook that discusses convolution.

Recall the general definition of the convolution f ∗ g of two real-valued functions:

(f ∗ g)(t) =

∫ ∞

−∞
f(u) g(t− u) du =

∫ ∞

−∞
f(t− u) g(u) du. (1)

We apply this to the problem where f and g are both given by

f(t) = g(t) =






0, t < a,

A, a ≤ t ≤ b,

0, t > b,

(2)

where [a, b] is a time interval on the real line, with a < b. In signal processing this represents a rectangular
pulse of amplitude A and width or duration T = b− a. The convolution of this function with itself is the
time-dependent function

(f ∗ f)(t) =

∫ ∞

−∞
f(u) f(t− u) du. (3)

How is f(t − u) related to f(u)? Define g(u) = f(u + t), which for t > 0 represents a horizontal
translation of f(u) to the left by t. Then h(u) = g(−u) = f(−u + t) = f(t − u) is a reflection of g(u)
across the vertical axis u = 0. Thus, as a function of u, f(t − u) is a replica of f(u) which, for t > 0, is
translated to the left a distance t, then reflected across the vertical axis u = 0. Thus, f(t− u) is a function
whose values depend on both u and t. The convolution is calculated for each value of t on the real line by
integrating over the real line (with respect to u) the product of the two functions f(u) and f(t− u) at that
value of t. For the rectangular function defined by (2), graphs of the functions f(u), f(u+ t), and f(t− u)
for t > 0 are illustrated below:
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Referring to the Figure, observe that as the distance t from a increases, the translated and reflected pulse
f(t − u) moves to the right toward +∞. On the other hand, as the distance t to the left of a decreases,
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the translated pulse f(u+ t) moves toward the right , and the translated and reflected pulse f(t−u) moves
toward the left .

Focusing first on the left edge u = t− b of f(t−u) (represented in the next two Figures by the rectangle
with ”dashed line” sides), we see that for u = t − b > b, the original pulse has value f(u) = 0, so the
convolution will be zero for t > 2b, corresponding to u > b.

When a < t− b ≤ b, or a+ b < t ≤ 2b, both f(u) = A and f(t− u) = A. But f(t− u) = 0 for u ≤ t− b,
so the integrand is nonzero only for t− b ≤ u ≤ b, as shown in this Figure:
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The two pulses coincide exactly when t− b = a, and t− a = b. that is, when t = a+ b.
For t > a + b, we focus on the right edge u = t − a of f(t − u) as it moves thru f(u) to the left. For

a ≤ t− a < b, or 2a ≤ t < a+ b, both f(u) and f(t− u) have amplitude A, but f(t− u) = 0 for u > t− a,
hence the integrand is nonzero only for a ≤ u ≤ t− a. The situation is illustrated in this Figure:
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Finally, for u = t − a < a, or t < 2a, the original pulse f(u) = 0, so the convolution is again zero for
u < a.

These results are summarized in the following calculations of the convolution for any value of t, listed
in the opposite order of the above discussion:






(f ∗ f)(t) = 0, for t < 2a,

(f ∗ f)(t) =

∫ t−a

a
A ·Adu = A2 (t − 2a), for 2a ≤ t ≤ a+ b,

(f ∗ f)(t) =

∫ b

t−b
A ·Adu = A2 (2b − t), for a+ b ≤ t ≤ 2b,

(f ∗ f)(t) = 0, for t > 2b.

(4)

The graph of this piecewise-defined function is an isosceles triangle of height A2 (b − a) at the vertex point
( (a+ b), A2(b−a) ), and base of width 2(b − a) with vertices at the points (2a, 0) and (2b, 0) on the t–axis.
These details are illustrated in the next Figure.
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